

Part II: Graph Mining with Large Language Models

Bowen Jin, Yu Zhang, Sha Li, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign Mar 4, 2024

Outline

Why Mining Graphs with Large Language Models?

- **Three Main Scenarios**
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models
- Mining Text-Paired Graphs with Large Language Models

Graphs

Graph data is ubiquitous in real world.

Large Language Models (LLMs)

LLMs have demonstrated their strong **text** encoding/decoding ability.

LLMs have shown newly found emergent ability (e.g., **reasoning**).

Why LLM on Graphs?

□ In real world, text and graph usually appears simultaneously.

5

Text data are associated with rich structure information in the form of graphs.

Why LLM on Graphs?

Although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning)

Graphs

Jin, et al. Large Language Model on Graphs: A Comprehensive Survey. Arxiv. 2023.12.

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models

- Direct answering: NLGraph (NeurIPs'23)
- Heuristic reasoning: Think-on-Graph (ICLR'24)
- Mining Text-Attributed Graphs with Large Language Models
- Mining Text-Paired Graphs with Large Language Models

NLGraph

A comprehensive benchmark to test if LLMs on directly solve graph tasks.

NLGraph

LLMs have preliminary graph reasoning ability.

Method		Connectivity			Cycle				Shortest Path				
	Easy	Medium	Hard	Avg.	Easy	Medium	Hard	Avg.	Easy	Hard	Easy (PC)	Hard (PC)	Avg.
RANDOM	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	6.07	6.69	14.73	13.81	17.81
ZERO-SHOT	83.81	72.75	63.38	71.31	50.00	50.00	50.00	50.00	29.40	21.00	46.00	26.76	30.79
FEW-SHOT	93.75	83.83	76.61	84.73	80.00	70.00	61.00	70.33	31.11	26.00	49.19	35.73	35.51
CoT	94.32	82.17	77.21	84.57	84.67	63.33	53.25	66.75	63.89	29.50	76.84	35.79	51.51
0-CoT	79.55	65.83	68.53	71.30	55.33	57.67	49.00	54.00	8.89	7.50	62.39	43.95	32.03
COT+SC	93.18	84.50	82.79	86.82	82.00	63.67	53.50	66.39	68.89	29.00	80.25	38.47	54.15

LLMs are (un)surprisingly brittle.

LLMs indeed rely on spurious correlations in problem settings.

Dataset	ZERO-SHOT	FEW-SHOT	СоТ	0-CoT	CoT+SC	Avg.
General	74.67	83.33	85.33	66.00	82.67	78.40
Chain	51.67 (-23.00)	45.00 (-35.33)	40.83 (-44.50)	92.50 (+26.50)	44.17 (-38.50)	54.83 (-23.57)
Clique	60.83 (-13.84)	73.33 (-10.00)	85.00 (-0.33)	52.50 (-13.50)	83.33 (+0.66)	71.00 (-7.40)

Wang, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPs 2023.

10

Think-on-Graph

Encourage LLMs to reason on graphs

11

Sun, et al. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. ICLR 2024.

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models 🤛

- Model architecture representation learning
- Language Model Pretraining
- Augment LLM with Graph
- Mining Text-Paired Graphs with Large Language Models

Text-attributed Graph

□ A graph where nodes/edges are associated with rich text information.

E-commerce Network

Social Network

MAPLE Benchmark

□ A graph where nodes/edges are associated with rich text information.

Field	Paper Source	#Papers	#Labels	#Venues	#Authors	#References
Art	Journal	58,373	1,990	98	54,802	115,343
Philosophy	Journal	59,296	3,758	98	36,619	198,010
Geography	Journal	73,883	3,285	98	157,423	884,632
Business	Journal	84,858	2,392	97	100,525	685,034
Sociology	Journal	90,208	1,935	98	85,793	842,561
History	Journal	113,147	2,689	99	84,529	284,739
Political Science	Journal	115,291	4,990	98	93,393	480,136
Environmental Science	Journal	123,945	694	100	265,728	1,217,268
Economics	Journal	178,670	5,205	97	135,247	1,042,253
Engineering	Journal	270,006	10,683	100	430,046	1,867,276
Psychology	Journal	372,954	7,641	100	460,123	2,313,701
Computer	Conference	263,393	13,613	75	331,582	1,084,440
Science	Journal	410,603	15,540	96	634,506	2,751,996
Geology	Journal	431,834	7,883	100	471,216	1,753,762
Mathematics	Journal	490,551	14,271	98	404,066	2,150,584
Materials Science	Journal	1,337,731	6,802	99	1,904,549	5,457,773
Physics	Journal	1,369,983	16,664	91	1,392,070	3,641,761
Biology	Journal	1,588,778	64,267	100	2,730,547	7,086,131
Chemistry	Journal	1,849,956	35,538	100	2,721,253	8,637,438
Medicine	Journal	2,646,105	36,619	100	4,345,385	7,405,779

14

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models
 - Model architecture representation learning
 - LLM-only: MICoL (WWW'22), METAG (arxiv'24)
 - GNN-cascaded LLM: GLEM (ICLR'23)
 - Graph-empowered LLM: GraphFormers (NeurIPs'21), Heterformer (KDD'23), Edgeformers (ICLR'23)
 - Language Model Pretraining
 - Augment LLM with Graph
- Mining Text-Paired Graphs with Large Language Models

Representation learning on text-attributed graphs

Given a text-attributed network, people are interested in various tasks.

- Node classification, link prediction, and node clustering.
- E.g., academic network
 - Automatically classify each paper.
 - □ Find the authors of a new paper.
 - Provide paper recommendation.

Representation learning on text-attributed graphs

Given a text-attributed network, people are interested in various tasks.

- □ Node classification, link prediction, and node clustering.
- □ Learn representations for nodes/edges which can be utilized in various tasks.
 - Textual information & structure information

Model Architecture

LLM-only

- □ Finetune LLM with signal from graphs.
- □ For example, MICoL (meta-path indictive), METAG (multiplex neighbors).

GNN-cascaded LLM

- LLM text encoding -> GNN graph encoding.
- For example, TextGNN, GLEM.

Graph-empowered LLM

- Joint model for text & graph encoding.
- For example, GraphFormers, Edgeformers, Heterformer.

Graph-Empowered LLM

LLM-only: MICoL

Observation

- □ Although hard to know "what is what", network can provide signals on "what is similar to what"
- E.g., papers written by the **same author** can share similar fine-grained topics
- E.g., papers published in the same venue can share similar coarse-grained topics

Meta-path

- □ A meta-path is a path \mathcal{M} defined on the graph $T_G = (\mathcal{T}_V, \mathcal{T}_E)$, and is denoted in the form of $\mathcal{M} =$
- $V_1 \xrightarrow{E_1} V_2 \xrightarrow{E_2} \cdots \xrightarrow{E_{m-1}} V_m$ where V_1, \dots, V_m are node types and E_1, \dots, E_{m-1} are edge types.

Meta-graph

• A meta-graph is a directed acyclic graph (DAG) \mathcal{M} defined on . It has single source node V_1 and a single target node V_m .

(c) meta-graph: P(AV)P

(d) meta-graph: P<-(PP)->P

19 Zhang, et al. Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.

LLM-only: MICoL

Two papers connected via a certain meta-path/meta-graph should be more similar than two randomly selected papers.

Zhang, et al. Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.

□ Texts in the real world are often interconnected by multiple types of semantic relations

- □ "same-venue" relations edges between papers -> sharing coarse-grained topics
- "cited-by" relations edges between papers -> sharing fine-grained topics

Multiplex Text-Attributed Graph

Existing PLM-based methods: learn a single vector for each text unit

Assumption: the semantics of different relations between text units are largely analogous

 $P(e_{ij}|v_i, v_j) \propto \operatorname{Sim}(\boldsymbol{h}_{v_i}, \boldsymbol{h}_{v_j}) \qquad P_{r_k}(e_{ij}|v_i, v_j) \approx P(e_{ij}|v_i, v_j) \approx P_{r_l}(e_{ij}|v_i, v_j)$

□ This assumption does not hold for multiplex text-attributed graphs

Semantic distribution shift exists across different relations

 $P_{r_k}(e_{ij}|v_i,v_j) \neq P_{r_l}(e_{ij}|v_i,v_j)$

Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.

□ Framework overview

23

Multiplex representation learning

Table 1: Multiplex representation learning experiments on academic networks: Geology and Mathematics. cb, sa, sv, cr, and ccb represent "cited-by", "same-author", "same-venue", "co-reference", and "co-cited-by" relation respectively.

			Geo	logy			Mathematics					
Model	cb	sa	sv	cr	ccb	Avg.	cb	sa	sv	cr	ccb	Avg.
SPECTER	12.84	12.89	1.5	5.56	9.1	8.38	28.74	23.55	2.39	15.96	25.59	19.25
SciNCL	15.91	14.3	1.57	6.41	10.4	9.72	36.14	26.41	2.83	19.82	30.69	23.18
MPNet-v2	30.87	20.94	1.94	10.36	17.16	16.25	46.12	29.92	3.11	23.60	36.42	27.83
OpenAI-ada-002	30.39	21.08	2.02	16.57	16.69	17.35	39.86	27.22	2.67	19.81	31.62	24.24
DMGI	28.99	27.79	4.91	9.86	16.32	17.58	46.55	42.62	6.11	27.80	38.87	28.85
HDMI	37.89	34.87	3.63	11.32	19.55	21.45	52.65	52.71	5.54	31.80	42.54	37.05
Vanilla FT	54.42	43.20	5.95	18.48	29.93	30.40	75.03	63.46	8.71	44.76	59.94	50.38
MTDNN	58.40	52.50	10.60	19.81	31.61	34.58	78.18	71.04	12.90	47.39	61.75	54.25
Ours	60.33	55.55	12.30	20.71	32.92	36.36	79.40	72.51	14.03	47.81	62.24	55.20

Table 2: Multiplex representation learning experiments on e-commerce networks: Clothes, Home, and Sports. cop, cov, bt, and cob represent "co-purchased", "co-viewed", "bought-together", and "co-brand" relation respectively.

		Clothes						Home			Sports				
Model	cop	cov	bt	cob	Avg.	cop	cov	bt	cob	Avg.	cop	cov	bt	cob	Avg.
MPNet-v2	55.89	60.92	59.75	39.12	53.92	52.02	61.83	62.04	38.10	53.50	41.60	64.61	49.82	40.61	49.16
OpenAI-ada-002	65.30	70.87	69.44	48.32	63.48	60.99	71.43	71.36	47.86	62.91	50.80	73.70	60.20	54.06	59.69
DMGI	56.10	52.96	58.46	30.88	49.60	48.27	52.74	57.90	48.81	51.93	41.37	46.27	41.24	31.92	40.20
HDMI	62.85	63.00	69.69	52.50	62.01	51.75	57.91	57.91	53.39	55.24	45.43	61.22	55.56	52.66	53.72
Vanilla FT	81.57	80.46	88.52	67.38	79.48	73.72	75.49	85.80	76.83	77.96	68.22 66.20	77.11	80.78	78.46	76.14
MTDNN	80.30	78.75	87.58	65.94	78.14	72.49	75.17	84.00	77.29	77.24		76.50	79.72	78.69	75.28
Ours	82.04	81.18	88.90	68.34	80.12	73.59	79.06	86.58	80.07	79.83	67.92	79.85	81.52	81.54	77.71

Embedding visualization

Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.

GNN-cascaded LLM: TextGNN

- □ LLM (text encoding) -> GNN (graph aggregation)
- LLM & GNN are optimized simultaneously

Zhu, et al. TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search. WWW 2021.

GNN-cascaded LLM: GLEM

□ Iteratively optimize LLM & GNN

Zhao, et al. Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023.

Graph-Empowered LLM: GraphFormers

- Learning on homogeneous text-attributed graphs.
 - Nodes are associated with textual information.
 - □ There is only one type of node and edge.

27

Put GNNs in between Transformer layers

Yang, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. NeurIPs'21.

Graph-Empowered LLM: GraphFormers

Link prediction

	Product				DBLP		Wiki			
Methods	P@1	NDCG	MRR	P@1	NDCG	MRR	P@1	NDCG	MRR	
PLM	0.6563	0.7911	0.7344	0.5673	0.7484	0.6777	0.3466	0.5799	0.4712	
TNVE	0.4618	0.6204	0.5364	0.2978	0.5295	0.4163	0.1786	0.4274	0.2933	
IFTN	0.5233	0.6740	0.5982	0.3691	0.5798	0.4773	0.1838	0.4276	0.2945	
PLM+GAT	0.7540	0.8637	0.8232	0.6633	0.8204	0.7667	0.3006	0.5430	0.4270	
PLM+Max	<u>0.7570</u>	0.8678	0.8280	0.6934	0.8386	0.7900	0.3712	0.6071	0.5022	
PLM+Mean	0.7550	0.8671	0.8271	0.6896	0.8359	0.7866	0.3664	0.6037	0.4980	
PLM+Att	0.7513	0.8652	0.8246	0.6910	0.8366	0.7875	0.3709	0.6067	0.5018	
GraphFormers	0.7786	0.8793	0.8430	0.7267	0.8565	0.8133	0.3952	0.6230	0.5220	

Online A/B test

Yang, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. NeurIPs'21.

Learning on textual-edge graphs.

29

- **E.g.**, user-review-item network, social network
- Link prediction, edge classification, node classification, etc.

30

Network-aware edge encoding with virtual node tokens.

- □ Text-aware node representation learning (Edgeformer-N)
 - Aggregate edge representations
 - Enhance edge representations with node's local network structure

Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR'23.

Edge classification

Table 7: Edge classification performance on Amazon-Movie, Amazon-App, Goodreads-Crime, and Goodreads-Children.

	Amazor	Amazon-Movie		n-Apps	Goodrea	ds-Crime	Goodreads-Children		
Model	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	
TF-IDF	50.01	64.22	48.30	62.88	43.07	51.72	39.42	49.90	
TF-IDF+nodes	53.59	66.34	50.56	65.08	49.35	57.50	47.32	56.78	
EHGNN	49.90	64.04	48.20	63.63	44.49	52.30	40.01	50.23	
BERT	61.38	71.36	59.11	69.27	56.41	61.29	51.57	57.72	
BERT+nodes	63.00	72.45	59.72	70.82	58.64	65.02	54.42	60.46	
BERT+EHGNN	61.45	70.73	58.86	70.79	56.92	61.66	52.46	57.97	
BERT+MaxSAGE	61.57	70.79	58.95	70.45	57.20	61.98	52.75	58.53	
GraphFormers	61.73	71.52	59.67	70.19	57.49	62.37	52.93	58.34	
Edgeformer-E	64.18	73.59	60.67	71.28	61.03	65.86	57.45	61.71	

Link prediction

	Amazoi	n-Movie	Amazo	n-Apps	Goodrea	ds-Crime	Goodread	ls-Children	StackO	verflow
Model	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG
MF	0.2032	0.3546	0.1482	0.3052	0.1923	0.3443	0.1137	0.2716	0.1040	0.2642
MeanSAGE	0.2138	0.3657	0.1766	0.3343	0.1832	0.3368	0.1066	0.2647	0.1174	0.2768
MaxSAGE	0.2178	0.3694	0.1674	0.3258	0.1846	0.3387	0.1066	0.2647	0.1173	0.2769
GIN	0.2140	0.3648	0.1797	0.3362	0.1846	0.3374	0.1128	0.2700	0.1189	0.2778
CensNet	0.2048	0.3568	0.1894	0.3457	0.1880	0.3398	0.1157	0.2726	0.1235	0.2806
NENN	0.2565	0.4032	0.1996	0.3552	0.2173	0.3670	0.1297	0.2854	0.1257	0.2854
BERT	0.2391	0.3864	0.1790	0.3350	0.1986	0.3498	0.1274	0.2836	0.1666	0.3252
BERT+MaxSAGE	0.2780	0.4224	0.2055	0.3602	0.2193	0.3694	0.1312	0.2872	0.1681	0.3264
BERT+MeanSAGE	0.2491	0.3972	0.1983	0.3540	0.1952	0.3477	0.1223	0.2791	0.1678	0.3264
BERT+GIN	0.2573	0.4037	0.2000	0.3552	0.2007	0.3522	0.1238	0.2801	0.1708	0.3279
GraphFormers	0.2756	0.4198	0.2066	0.3607	0.2176	0.3684	0.1323	0.2887	0.1693	0.3278
BERT+CensNet	0.1919	0.3462	0.1544	0.3132	0.1437	0.3000	0.0847	0.2436	0.1173	0.2789
BERT+NENN	0.2821	0.4256	0.2127	0.3666	0.2262	0.3756	0.1365	0.2925	0.1619	0.3215
Edgeformer-N	0.2919	0.4344	0.2239	0.3771	0.2395	0.3875	0.1446	0.3000	0.1754	0.3339
$\overline{+\Delta\%}$	3.5%	2.1%	5.3%	2.9%	5.9%	3.2%	5.9%	2.6%	2.7%	1.8%

Node classification

		Amazon-Movie		Amazon-Apps				
Model	Macro-F1	Micro-F1	PREC	Macro-F1	Micro-F1	PREC		
MF	0.7566±0.0017	0.8234±0.0013	0.8241±0.0013	0.4647±0.0151	0.8393±0.0012	0.8462±0.0006		
CensNet	0.8528±0.0010	0.8839 ± 0.0008	0.8845±0.0007	0.2782±0.0168	0.8279±0.0006	0.8331±0.0005		
NENN	0.9186±0.0008	0.9341±0.0008	0.9347±0.0007	0.3408 ± 0.0082	0.8789±0.0019	0.8819 ± 0.0017		
BERT	0.9209±0.0005	0.9361±0.0003	0.9367±0.0003	0.7608±0.0175	0.9283±0.0015	0.9337±0.0015		
BERT+CensNet	0.9032±0.0006	0.9221±0.0004	0.9227±0.0004	0.5750±0.0277	0.8692±0.0034	0.8731±0.0028		
BERT+NENN	0.9247±0.0005	0.9387 ± 0.0004	0.9393 ± 0.0005	0.7556 ± 0.0092	0.9306 ± 0.0008	0.9382±0.0006		
Edgeformer-N	0.9276±0.0007	0.9411±0.0006	0.9417±0.0005	0.7758±0.0100	0.9339±0.0007	0.9431±0.0005		

Learning on heterogeneous text-attributed graphs.

□ Text-attributed.

33

- Heterogeneous: presence or absence of text & diversity of types.
- E.g., Academic Networks, Social Media Networks

Overall framework

- □ Heterformer: a graph-empowered Transformer.
- Unifying text semantic encoding and network signal capturing.

Text-Rich Node Encoding

- Network-aware node text encoding with virtual neighbor tokens.
- Multi-head attention-based heterogeneous neighbor aggregation.

Textless Node Encoding

Node type heterogeneity-based representation

$$h_{v_p}^{(l)} = W_{\phi_i}^{(l)} h_{v_p}^{(0)}$$
, where $\phi(v_p) = \phi_i$, $\phi_i \in \mathcal{A}_{TL}$.

Node type heterogeneity

- □ Textless node embedding warm up
 - A great number of textless nodes will introduce a great number of randomly initialized parameters into the model -> underfitting.
 - □ Warm up to give textless node embeddings good initializations.

$$\min_{\boldsymbol{h}_{vp}^{(l)}} \mathcal{L}_{\boldsymbol{w}} = \sum_{\substack{v_p \in \mathcal{V} \\ \phi(v_p) \in \mathcal{A}_{\mathrm{TL}}}} \sum_{v_u \in \widehat{N}_{vp}} -\log \frac{\exp(\bar{\boldsymbol{h}}_{v_u}^\top \boldsymbol{h}_{vp}^{(l)})}{\exp(\bar{\boldsymbol{h}}_{v_u}^\top \boldsymbol{h}_{vp}^{(l)}) + \sum_{v_u'} \exp(\bar{\boldsymbol{h}}_{v_u'}^\top \boldsymbol{h}_{vp}^{(l)})},$$

Link prediction

	Method		DBLP			Twitter			Goodreads	
	Method	PREC	MRR	NDCG	PREC	MRR	NDCG	PREC	MRR	NDCG
	MeanSAGE	0.7019	0.7964	0.8437	0.6489	0.7450	0.7991	0.6302	0.7409	0.8001
	BERT	0.7569	0.8340	0.8726	0.7179	0.7833	0.8265	0.5571	0.6668	0.7395
Ž	BERT+MeanSAGE	0.8131	0.8779	0.9070	0.7201	0.7845	0.8275	0.7301	0.8167	0.8594
G	BERT+MAXSAGE	0.8193	0.8825	0.9105	0.7198	0.7845	0.8276	0.7280	0.8164	0.8593
no	BERT+GAT	0.8119	0.8771	0.9063	0.7231	0.7873	0.8300	0.7333	0.8170	0.8593
Ю	GraphFormers	0.8324	0.8916	0.9175	0.7258	0.7891	0.8312	0.7444	0.8260	0.8665
z	BERT+RGCN	0.7979	0.8633	0.8945	0.7111	0.7764	0.8209	0.7488	0.8303	0.8699
R	BERT+HAN	0.8136	0.8782	0.9072	0.7237	0.7880	0.8306	0.7329	0.8174	0.8597
õ	BERT+HGT	0.8170	0.8814	0.9098	0.7153	0.7800	0.8237	0.7224	0.8112	0.8552
etei	BERT+SHGN	0.8149	0.8785	0.9074	0.7218	0.7866	0.8295	0.7362	0.8195	0.8613
H	GraphFormers++	0.8233	0.8856	0.9130	0.7159	0.7799	0.8236	0.7536	0.8328	0.8717
	Heterformer	0.8474*	0.9019*	0.9255*	0.7272*	0.7908*	0.8328*	0.7633*	0.8400*	0.8773*

Node clustering

Mathad	DE	BLP	Goodreads			
Method	NMI	ARI	NMI	ARI		
BERT	0.2570	0.3349	0.2325	0.4013		
BERT+MaxSAGE	0.2615	0.3490	0.2205	0.4173		
BERT+MeanSAGE	0.2628	0.3488	0.2449	0.4329		
BERT+GAT	0.2598	0.3419	0.2408	0.4185		
GraphFormers	0.2633	0.3455	0.2362	0.4139		
BERT+HAN	0.2568	0.3401	0.2391	0.4266		
BERT+HGT	0.2469	0.3392	0.2427	0.4296		
BERT+SHGN	0.2589	0.3431	0.2373	0.4171		
GraphFormers++	0.2566	0.3432	0.2372	0.4211		
Heterformer	0.2707*	0.3639*	0.2429	0.4199		

Node classification

Table 3: Transductive text-rich node classification.

Mathad	DE	BLP	Good	lreads
Method	Micro-F1	Macro-F1	Micro-F1	Macro-F1
BERT	0.6119	0.5476	0.8364	0.7713
BERT+MaxSAGE	0.6179	0.5511	0.8447	0.7866
BERT+MeanSAGE	0.6198	0.5522	0.8420	0.7826
BERT+GAT	0.5943	0.5175	0.8328	0.7713
GraphFormers	0.6256	0.5616	0.8388	0.7786
BERT+HAN	0.5965	0.5211	0.8351	0.7747
BERT+HGT	0.6575	0.5951	0.8474	0.7928
BERT+SHGN	0.5982	0.5214	0.8345	0.7737
GraphFormers++	0.6474	0.5790	0.8516	0.7993
Heterformer	0.6695*	0.6062*	0.8578*	0.8076*

Embedding visualization

(a) DBLP

(b) Goodreads

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models
 - Model architecture representation learning
 - Language Model Pretraining: Patton (ACL'23)
 - Augment LLM with Graph
- Mining Text-Paired Graphs with Large Language Models

Why do we need language model pretraining on network?

- Given a text-rich network, people are interested in various downstream tasks
 Document/node classification, document retrieval and link prediction
- Text-rich network contains rich unsupervised semantic information
 - Alleviate human labeling burden for downstream tasks

Pretraining on a Text-rich Network G

- How to design pretraining strategies to help LMs extract unsupervised semantic information from the network?
 - Motivation 1: On token-level, documents can help facilitate the understanding of tokens.

Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.

- How to design pretraining strategies to help LMs extract unsupervised semantic information from the network?
 - Motivation 2: On document-level, the two connected nodes can have quite related overall textual semantics.

Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.

- Pretraining strategy 1: Network-contextualized masked language modeling
 - Original masked language modeling
 - BERT, domain adaptation
 - □ The semantics of each token can be reflected by its contexts.

$$\mathcal{L}_{\mathrm{MLM}} = -\sum_{i \in M_t} \log p(w_i | \boldsymbol{H}_i),$$

Ours

42

- In node MLM -> Network contextualized MLM
- Use both in-node text context and neighbor node context to conduct masked token prediction
- Facilitate the LM to understand both in-node token correlation and network-contextualized text semantic relatedness

 On the [mask]?

$$\mathcal{L}_{ ext{NMLM}} = -\sum_{i \in M} \log p(w_i | oldsymbol{H}_x, oldsymbol{z}_x),$$

Pretraining strategy 2: Masked Node Prediction

- We dynamically hold out a subset of nodes from the network $(M_{\nu} \subseteq V)$, mask them, and train the LM to predict the masked nodes based on the adjacent network structure.
- LM will absorb document semantic hints hidden inside the network structure.

$$\mathcal{L}_{ ext{MNP}} = -\sum_{v_j \in M_v} \log p(v_j | oldsymbol{G}_{v_j})$$

- Representations for all candidates/neighboring nodes
- We prove that masked node prediction can be theoretically transferred to a computationally cheaper pairwise link prediction task.

$$\begin{split} &\prod_{v_{\text{[mask]}} \in M_v} p(v_{\text{[mask]}} = v_i | v_k \in N_{v_{\text{[mask]}}}) \\ &\propto \prod_{v_{\text{[mask]}} \in M_v} p(v_k \in N_{v_{\text{[mask]}}} | v_{\text{[mask]}} = v_i] \end{split}$$

=

1

. .

$$= \prod_{v_{ ext{Emask]}} \in M_v} \prod_{v_k \in N_{v_{ ext{Emask]}}}} p(v_k | v_{ ext{Emask]}} = v_i)$$

$$= \prod_{v_{\text{[MASK]}} \in M_v} \prod_{v_k \in N_{v_{\text{[MASK]}}}} p(v_k \longleftrightarrow v_i)$$

 \propto

Retrieval

Table 3: Experiment results on Retrieval.	We show the mean std	of three runs for all the methods.

Mathad	Mathematics		Geology		Economy		Clothes		Sports	
Method	R@50	R@100	R@50	R@100	R@50	R@100	R@50	R@100	R@50	R@100
BM25	20.76	24.55	19.02	20.92	19.14	22.49	15.76	15.88	22.00	23.96
BERT	$16.73_{0.17}$	$22.66_{0.18}$	$18.82_{0.39}$	$25.94_{0.39}$	$23.95_{0.25}$	$31.54_{0.21}$	$40.77_{1.68}$	$50.40_{1.41}$	$32.37_{1.09}$	$43.32_{0.96}$
GraphFormers	$16.65_{0.12}$	$22.41_{0.10}$	$18,92_{0.60}$	$25.94_{0.39}$	$24.48_{0.36}$	$32.16_{0.40}$	$41.77_{2.05}$	$51.26_{2.27}$	$32.39_{0.89}$	$43.29_{1.12}$
SciBERT	$24.70_{0.17}$	$33.55_{0.31}$	$23.71_{0.89}$	$30.94_{0.95}$	$29.80_{0.66}$	$38.66_{0.52}$	-	-	-	-
SPECTER	$23.86_{0.25}$	$31.11_{0.31}$	$26.56_{1.05}$	$34.04_{1.32}$	$31.26_{0.15}$	$40.79_{0.11}$	-	-	-	-
SimCSE (unsup)	$17.91_{0.26}$	$23.19_{0.29}$	$20.45_{0.20}$	$26.82_{0.26}$	$25.83_{0.23}$	$33.42_{0.28}$	$44.90_{0.35}$	$54.76_{0.38}$	$38.81_{0.35}$	$49.30_{0.44}$
SimCSE (sup)	$20.29_{0.41}$	$26.23_{0.51}$	$22.34_{0.49}$	$29.63_{0.55}$	$28.07_{0.38}$	$36.51_{0.37}$	$44.69_{0.59}$	$54.70_{0.77}$	$40.31_{0.43}$	$50.55_{0.41}$
LinkBERT	$17.25_{0.30}$	$23.21_{0.47}$	$17.14_{0.75}$	$23.05_{0.74}$	$22.69_{0.30}$	$30.77_{0.36}$	$28.66_{2.97}$	$37.79_{3.82}$	$31.97_{0.54}$	$41.77_{0.67}$
BERT.MLM	$20.69_{0.21}$	$27.17_{0.25}$	$32.13_{0.36}$	$41.74_{0.42}$	$27.13_{0.04}$	$36.00_{0.14}$	$52.41_{1.71}$	$63.72_{1.79}$	$54.10_{0.81}$	$63.14_{0.83}$
SciBERT.MLM	$20.65_{0.21}$	$27.67_{0.32}$	$31.65_{0.71}$	$40.52_{0.76}$	$29.23_{0.67}$	$39.18_{0.73}$	-	-	-	-
SimCSE.in-domain	$24.54_{0.05}$	$31.66_{0.09}$	$33.97_{0.07}$	$44.09_{0.19}$	$28.44_{0.31}$	$37.81_{0.27}$	$61.42_{0.84}$	$72.25_{0.86}$	$53.77_{0.22}$	$63.73_{0.30}$
PATTON	$27.44_{0.15}$	$34.97_{0.21}$	$34.94_{0.23}$	$45.01_{0.28}$	$32.10_{0.51}$	$42.19_{0.62}$	68.62 _{0.38}	77.54 _{0.19}	58.63 _{0.31}	$68.53_{0.55}$
SciPATTON	$31.40_{0.52}$	$40.38_{0.66}$	$40.69_{0.52}$	$51.31_{0.48}$	$35.82_{0.69}$	$46.05_{0.69}$	-	-	-	-
w/o NMLM	$30.85_{0.14}$	$39.89_{0.23}$	$39.29_{0.07}$	$49.59_{0.11}$	$35.17_{0.31}$	46.07 _{0.20}	$65.60_{0.26}$	$75.19_{0.32}$	$57.05_{0.14}$	$67.22_{0.12}$
w/o MNP	$22.47_{0.07}$	$30.20_{0.15}$	$31.28_{0.89}$	$40.54_{0.97}$	$29.54_{0.36}$	$39.57_{0.57}$	$60.20_{0.73}$	$69.85_{0.52}$	$51.73_{0.41}$	$60.35_{0.78}$

Classification

Table 2: Experiment results on Classification. We show the mean _{std} of three runs for all the methods.										
Made 1	Mathematics		Geology		Economy		Clothes		Sports	
Method	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
BERT	$18.14_{0.07}$	$22.04_{0.32}$	$21.97_{0.87}$	$29.63_{0.36}$	$14.17_{0.08}$	$19.77_{0.12}$	$45.10_{1.47}$	$68.54_{2.25}$	$31.88_{0.23}$	$34.58_{0.56}$
GraphFormers	$18.69_{0.52}$	$23.24_{0.46}$	$22.64_{0.92}$	$31.02_{1.16}$	$13.68_{1.03}$	$19.00_{1.44}$	$46.27_{1.92}$	$68.97_{2.46}$	$43.77_{0.63}$	$50.47_{0.78}$
SciBERT	$23.50_{0.64}$	$23.10_{2.23}$	$29.49_{1.25}$	$37.82_{1.89}$	$15.91_{0.48}$	$21.32_{0.66}$	-	-	-	-
SPECTER	$23.37_{0.07}$	$29.83_{0.96}$	$30.40_{0.48}$	$38.54_{0.77}$	$16.16_{0.17}$	$19.84_{0.47}$	-	-	-	-
SimCSE (unsup)	$20.12_{0.08}$	$26.11_{0.39}$	$38.78_{0.19}$	$38.55_{0.17}$	$14.54_{0.26}$	$19.07_{0.43}$	$42.70_{2.32}$	$58.72_{0.34}$	$41.91_{0.85}$	$59.19_{0.55}$
SimCSE (sup)	$20.39_{0.07}$	$25.56_{0.00}$	$25.66_{0.28}$	$33.89_{0.40}$	$15.03_{0.53}$	$18.64_{1.32}$	$52.82_{0.87}$	$75.54_{0.98}$	$46.69_{0.10}$	$59.19_{0.55}$
LinkBERT	$15.78_{0.91}$	$19.75_{1.19}$	$24.08_{0.58}$	$31.32_{0.04}$	$12.71_{0.12}$	$16.39_{0.22}$	$44.94_{2.52}$	$65.33_{\scriptstyle 4.34}$	$35.60_{0.33}$	$38.30_{0.09}$
BERT.MLM	$23.44_{0.39}$	$31.75_{0.58}$	$36.31_{0.36}$	$48.04_{0.69}$	$16.60_{0.21}$	$22.71_{1.16}$	$46.98_{0.84}$	$68.00_{0.84}$	$62.21_{0.13}$	$75.43_{0.74}$
SciBERT.MLM	$23.34_{0.42}$	$30.11_{0.97}$	$36.94_{0.28}$	$46.54_{0.40}$	$16.28_{0.38}$	$21.41_{0.81}$	-	-	-	-
SimCSE.in-domain	$25.15_{0.09}$	$29.85_{0.20}$	$38.91_{0.08}$	$48.93_{0.14}$	$18.08_{0.22}$	$23.79_{0.44}$	$57.03_{0.20}$	$80.16_{0.31}$	$65.57_{0.35}$	$75.22_{0.18}$
PATTON	27.58 _{0.03}	32.82 _{0.01}	$39.35_{0.06}$	$48.19_{0.15}$	$19.32_{0.05}$	$25.12_{0.05}$	60.14 _{0.28}	84.88 _{0.09}	67.57 _{0.08}	78.60 _{0.15}
SciPATTON	$27.35_{0.04}$	$31.70_{0.01}$	39.65 _{0.10}	48.93 _{0.06}	$19.91_{0.08}$	$25.68_{0.32}$	-	-	-	-
w/o NMLM	$25.91_{0.45}$	$27.79_{2.07}$	$38.78_{0.19}$	48.480.17	$18.86_{0.23}$	$24.25_{0.26}$	$56.68_{0.24}$	80.270.17	$65.83_{0.28}$	$76.24_{0.54}$
w/o MNP	$24.79_{0.65}$	$29.44_{1.50}$	$38.00_{0.73}$	$47.82_{1.06}$	$18.69_{0.59}$	$25.63_{\scriptstyle 1.44}$	$47.35_{1.20}$	$68.50_{2.60}$	$64.23_{1.53}$	$76.03_{1.67}$

Link prediction

able 5: Experiment results on Link Predict	on. We show the mean _{std}	of three runs for all the methods.
--	-------------------------------------	------------------------------------

tole 5: Experiment results on Emix reduction. We show the mean _{sta} of three funs for an the method										
Method	Mathematics		Geology		Economy		Clothes		Sports	
	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR
BERT	$6.60_{0.16}$	$12.96_{0.34}$	$6.24_{0.76}$	$12.96_{1.34}$	$4.12_{0.08}$	$9.23_{0.15}$	$24.17_{0.41}$	$34.20_{0.45}$	$16.48_{0.45}$	$25.35_{0.52}$
GraphFormers	$6.91_{0.29}$	$13.42_{0.34}$	$6.52_{1.17}$	$13.34_{1.81}$	$4.16_{0.21}$	$9.28_{0.28}$	$23.79_{0.69}$	$33.79_{0.66}$	$16.69_{0.36}$	$25.74_{0.48}$
SciBERT	$14.08_{0.11}$	$23.62_{0.10}$	$7.15_{0.26}$	$14.11_{0.39}$	$5.01_{1.04}$	$10.48_{1.79}$	-	-	-	-
SPECTER	$13.44_{0.5}$	$21.73_{0.65}$	$6.85_{0.22}$	$13.37_{0.34}$	$6.33_{0.29}$	$12.41_{0.33}$	-	-	-	-
SimCSE (unsup)	$9.85_{0.10}$	$16.28_{0.12}$	$7.47_{0.55}$	$14.24_{0.89}$	$5.72_{0.26}$	$11.02_{0.34}$	$30.51_{0.09}$	$40.40_{0.10}$	$22.99_{0.07}$	$32.47_{0.06}$
SimCSE (sup)	$10.35_{0.52}$	$17.01_{0.72}$	$10.10_{0.04}$	$17.80_{0.07}$	$5.72_{0.26}$	$11.02_{0.34}$	$35.42_{0.06}$	$46.07_{0.06}$	$27.07_{0.15}$	$37.44_{0.16}$
LinkBERT	$8.05_{0.14}$	$13.91_{0.09}$	$6.40_{0.14}$	$12.99_{0.17}$	$2.97_{0.08}$	$6.79_{0.15}$	$30.33_{0.56}$	$39.59_{0.64}$	$19.83_{0.09}$	$28.32_{0.04}$
BERT.MLM	$17.55_{0.25}$	$29.22_{0.26}$	$14.13_{0.19}$	$25.36_{0.20}$	$9.02_{0.09}$	$16.72_{0.15}$	$42.71_{0.31}$	$54.54_{0.35}$	$29.36_{0.09}$	$41.60_{0.05}$
SciBERT.MLM	$22.44_{0.08}$	$34.22_{0.05}$	$16.22_{0.03}$	$27.02_{0.07}$	$9.80_{0.00}$	$17.72_{0.01}$	-	-	-	-
SimCSE.in-domain	$33.55_{0.05}$	$46.07_{0.07}$	$24.56_{0.06}$	$36.89_{0.11}$	$16.77_{0.10}$	$26.93_{0.01}$	$60.41_{0.03}$	$71.86_{0.06}$	$49.17_{0.04}$	$63.48_{0.03}$
PATTON	$70.41_{0.11}$	$80.21_{0.04}$	$44.76_{0.05}$	$57.71_{0.04}$	$57.04_{0.05}$	$68.35_{0.04}$	$58.59_{0.12}$	$70.12_{0.12}$	$46.68_{0.09}$	$60.96_{0.23}$
SciPATTON	71.22 _{0.17}	80.79 _{0.10}	44.95 _{0.24}	57.84 _{0.25}	57.36 _{0.26}	68.71 _{0.31}	-	-	-	-
w/o NMLM	71.040.13	80.600.07	44.330.23	$57.29_{0.22}$	$56.64_{0.25}$	$68.12_{0.16}$	60.300.03	$71.67_{0.07}$	49.72 _{0.06}	63.76 _{0.04}
w/o MNP	$63.06_{0.23}$	$74.26_{0.11}$	$33.84_{0.60}$	$47.02_{0.65}$	$44.46_{0.03}$	$57.05_{0.04}$	$49.62_{0.06}$	$61.61_{0.01}$	$36.05_{0.20}$	$49.78_{0.25}$

How pretraining help the model?

Finetune data size study

Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models
 - Model architecture representation learning
 - Language Model Pretraining
 - Augment LLM with Graph: Graph CoT (arxiv'24)

Mining Text-Paired Graphs with Large Language Models

Augment LLM with Graph

- Retrieval-augmented generation (RAG)
 - Motivation
 - LLMs suffer from hallucination
 - External corpus can provide knowledge to mitigate hallucination
 - Pipeline
 - Retriever: fetch knowledge from corpus

What if the text units in the corpora is linked?

LLM: inference

- Jin, et al. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. Arxiv'24.

Augment LLM with Graph: Graph CoT

Graph Chain-of-Thought

Iteratively traverse on graph & reasoning with LLM

Outline

- Why Mining Graphs with Large Language Models?
- Mining Pure Graphs with Large Language Models
- Mining Text-Attributed Graphs with Large Language Models
- Mining Text-Paired Graphs with Large Language Models
 - MolT5 (EMNLP'22)

MolT5

A pretrained molecular language model

49

Summary

□ A survey paper of LLM & graphs

□ A resource repo of LLM & graphs

paper

repo

References

- Jin, et al. Large Language Model on Graphs: A Comprehensive Survey. Arxiv. 2023.12.
- □ Wang, et al. Can Language Models Solve Graph Problems in Natural Language? NeurIPs 2023.
- Sun, et al. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph.
 ICLR 2024.
- Zhang, et al. The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.
- Zhang, et al. Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.
- Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.
- Zhu, et al. TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search. WWW 2021.
- □ Zhao, et al. Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023.

References

- Yang, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. NeurIPs'21.
- □ Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR'23.
- □ Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD'23.
- Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.
- Jin, et al. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. Arxiv'24.
- Carl, et al. Translation between Molecules and Natural Language. EMNLP'22.

Q&A

